Structural variety of arginine-rich RNA-binding peptides.
نویسندگان
چکیده
Arginine-rich domains are used by a variety of RNA-binding proteins to recognize specific RNA hairpins. It has been shown previously that a 17-aa arginine-rich peptide from the human immunodeficiency virus Rev protein binds specifically to its RNA site when the peptide is in an alpha-helical conformation. Here we show that related peptides from splicing factors, viral coat proteins, and bacteriophage antiterminators (the N proteins) also have propensities to form alpha-helices and that the N peptides require helical conformations to bind to their cognate RNAs. In contrast, introducing proline mutations into the arginine-rich domain of the human immunodeficiency virus Tat protein abolishes its potential to form an alpha-helix but does not affect RNA-binding affinity in vitro or in vivo. Based on results from several peptide-RNA model systems, we suggest that helical peptides may be used to recognize RNA structures having particularly wide major grooves, such as those found near loops or large bulges, and that nonhelical or extended peptides may be used to recognize less accessible grooves.
منابع مشابه
Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition.
Arginine-rich sequences are found in many RNA-binding proteins and have been proposed to mediate specific RNA recognition. Fragments of the HIV-1 Tat protein that contain the arginine-rich region of Tat bind specifically to a 3-nucleotide bulge in TAR RNA. To determine the amino acid requirements for specific RNA recognition, we synthesized a series of mutant Tat peptides spanning this domain (...
متن کاملSelection of RRE RNA binding peptides using a kanamycin antitermination assay.
The arginine-rich domains of several RNA-binding proteins have been shown to bind their cognate RNAs with high affinities and specificities as isolated peptides, adopting different conformations within different complexes. The sequence simplicity and structural diversity of the arginine-rich motif has made it a good framework for constructing combinatorial libraries and identifying novel RNA-bi...
متن کاملViral coat protein peptides with limited sequence homology bind similar domains of alfalfa mosaic virus and tobacco streak virus RNAs.
An unusual and distinguishing feature of alfalfa mosaic virus (AMV) and ilarviruses such as tobacco streak virus (TSV) is that the viral coat protein is required to activate the early stages of viral RNA replication, a phenomenon known as genome activation. AMV-TSV coat protein homology is limited; however, they are functionally interchangeable in activating virus replication. For example, TSV ...
متن کاملMolding a peptide into an RNA site by in vivo peptide evolution (RNA–protein recognitionyRNA structureyarginine-rich motifyHIV-1 Rev-Rev response elementyl N antitermination)
Short peptides corresponding to the arginine-rich domains of several RNA-binding proteins are able to bind to their specific RNA sites with high affinities and specificities. In the case of the HIV-1 Rev-Rev response element (RRE) complex, the peptide forms a single a-helix that binds deeply in a widened, distorted RNA major groove and makes a substantial set of base-specific and backbone conta...
متن کاملSelection of RNA-binding peptides using mRNA-peptide fusions.
We have been working to apply in vitro selection to isolate novel RNA-binding peptides. To do this, we use mRNA-protein fusions, peptides covalently attached to their own mRNA. Here, we report selection protocols developed using the arginine-rich domain of bacteriophage lambda-N protein and its binding target, the boxB RNA. Systematic investigation of possible paths for a selection round has al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 92 12 شماره
صفحات -
تاریخ انتشار 1995